Introduction to ITER

Alberto Loarte Science Division Science, Controls, and Operation Department ITER Organization

The views and opinions expressed herein do not necessarily reflect those of the ITER Organization

12th ITER International School – 26 – June - 2023

Page 1/47

Outline of talk

□ ITER Mission, Basis, Goals, Scenarios and Overall Design

□ ITER Project and Overview of Construction Status

□ ITER Research Plan (IRP) and burning plasma physics

Conclusions

ITER Mission, Basis, Goals and overall design

ITER Mission

- To demonstrate the scientific and technological feasibility of fusion power as energy source for humankind based on D + T \rightarrow ⁴He + n (17.6 MeV)
- $P_{\text{fusion}} (^{4}\text{He} + n) = P_{\alpha} + P_{n} > P_{\text{external-heat}}$
- $Q = P_{fusion} (^{4}He + n)/P_{external-heat}$
- $P_{total-heat} = P_{\alpha} (^{4}He) + P_{external-heat}$
- $P_{\alpha}/P_{external-heat} = Q/5$
- To achieve high Q (> 5) requires hot (> 10 keV) plasmas with sufficient density that keep energy for sufficiently long time

n_iτ_ET_i > 3×10²¹ m⁻³ s keV

Page 4/47

ITER Basis: Magnetic Confinement

At high temperatures required for fusion D and T are ionized ("Plasma") → hot DT can be contained by magnetic fields

- Magnetic fields are used to :
- Reduce thermal losses across magnetic field
- Provide stabilizing compression force to compensate hot plasma expansion

ITER Basis: Plasma Heating

To achieve fusion power production T ~ 10 keV \rightarrow Heating of Plasma is required :

2.0

- > Ohmic heating = $I_p^2 R_p$; $R_p \sim T^{-3/2}$ → insufficient
- Radio Frequency Heating
- Injection of energetic atoms

ITER Basis: Energy Confinement (\tau_E)

ITER Goals

- > Pulsed operation:
- Q ≥ 10 for burn lengths of 300-500 s inductively driven current
- → Baseline scenario 15 MA / 5.3 T

 $P_{\alpha} \ge 2 P_{external-heat}$

- Long pulse operation:
 Q ~ 5 for long pulses up to 1000 s
 Hybrid scenario 12.5 MA (5.3 T)
- → Hybrid scenario ~ 12.5 MA / 5.3 T
- Steady-state operation:
 Q ~ 5 for long pulses up to 3000 s, with fully non-inductive current drive
 Steady-state scenario ~ 10 MA / 5.3 T

Page 8/47

ITER Q = 10 scenario (300 – 500 s burn)

- Based on conventional sawtoothing H-mode with H₉₈ = 1 → scenario used for the design of magnets and components (15 MA/5.3 T)
- □ $P_{aux} = P_{NBI} + P_{ECH}$ (+ P_{ICH}) ~ 50 MW \rightarrow Alpha-heating dominant scenario with non-inductively driven current ~ 35%

12th ITER International School – 26 – June - 2023

Page 9/47

ITER Main Design Features

Page 10/47

ITER Heating and Current Drive systems

12th ITER International School – 26 – June - 2023

Page 11/47

ITER Diagnostics and 3-D coils (Error Field, ELM control)

□ Diagnostics: ~ 60 instruments measuring ~ 100 parameters

□ External error field correction coils + internal ELM control coils

Tritium Breeding : Test Blanket Systems

Tritium not available in sufficient amounts for large scale nuclear fusion energy production → Tritium needs to be produced in-situ (n + Li) T production schemes will de demonstrated in ITER (at small scale)

Different test blanket systems will be installed in ITER to test different combinations of design options:

- Liquid metal breeder
- Solid breeder
- Helium coolant
- Water coolant

ITER as a Project and overview of Construction Status

Global challenge, global response

- 28 June 2005: The ITER Members unanimously agreed to build ITER on the site proposed by Europe
- 21 November 2006: The ITER Agreement is signed at the Élysée Palace, in Paris.

Page 15/47

The seven ITER Members represent more than 50% of the world's population and about 85% of the global GDP

China EU India Japan Korea Russia USA

12th ITER International School – 26 – June - 2023

Construction ITER – Who manufactures What ?

Many massive arrivals in 2020-23 (few shown)

12th ITER International School – 26 – June - 2023

Page 17/47

ITER Site Construction Status

ITER construction site drone view

12th ITER International School – 26 – June - 2023

Page 19/47

ITER Control Room

Balance of plant Towards commissioning

Cryoplant: 5 000 tonnes of equipment LHe: 25 t Cooling Power: 75 kW at 4.5 K (Helium) 1300kW at 80 K (Nitrogen)

ITER Tokamak Assembly Status

Assembly Hall and Tokamak building

Tokamak components assembled in assembly hall and lifted by cranes into tokamak pit

A crucial milestone

28 July 2020: remote celebration by 7 ITER Members Heads of State and French

12th ITER International School – 26 – June - 2023

iter china eu india japan korea russia usa

06

Page 24/47

Sub-sector assembly

□ Assembly of Vacuum Vessel, Thermal Shield and 2 Toroidal Field coils

TF Coil Assembly

Finalized Sector Assembly before transfer to pit

Alignment procedure completed

12th ITER International School – 26 – June - 2023

Page 28/47

Alignment procedure guided by physics assessment of error fields

Alignment targets ensure that for 99% of the cases TF assembly will contribute less than 33% of the n = 1 overlap field (ITPA scaling)

Issues found and solutions more details in <u>https://www.iter.org/newsline/-/3818</u> and <u>https://www.iter.org/newsline/-/3830</u>

Corrosion of cooling pipes in thermal shields

12th ITER International School – 26 – June - 2023

Page 31/47

Dimensional non-conformities of VV sectors impacting sector-tosector welding

- Solution for VV thermal shield → remove old pipes and re-weld new pipes (different steel and welding process/material) + remanufacture of few panels → requires removal of installed shields from sectors
- Solution for Cryostat thermal shield → leave old pipes (unused) and re-weld new pipes (different steel/welding process/material) on-site
- ➢ Solution to VV non-conformity → remove and add material to meet required dimensions (73 - 400 kg per octant)

Repairs to about to start (contracts will be signed soon) \rightarrow duration of repairs cannot be precisely estimated at this time

Page 33/47

ITER Research Plan (IRP) and burning plasma physics

ITER Research Plan (IRP)

IRP describes strategy for R&D to achieve Project goals starting from First Plasma to Q = 10 (300-500 s),Q = 5 (1000 s) & Q = 5 steady-state Proposed R&D is supported by available systems in each phase

- > Initial phase H (and D) to demonstrate :
 - 15 MA/5.3 T plasmas in L-mode
 - Low/Medium current plasmas (I_p = 5 7.5 MA) in Hmode
- Main phase (D and DT) to demonstrate :
 - Burning Q = 10 plasmas
 - Long Pulse Q = 5 plasmas

Details under reconsideration

ITER re-baselining

Main features

- Pre First Plasma Assembly (Pre-FPA), most of in-vessel components installed (except water cooled Blanket First Wall)
- Augmented First Plasma Phase (A-FP) of about 2 years
- Post First Plasma Assembly (Post-FPA), complete installation of in-vessel components (incl. water cooled Blanket First Wall
- DT-1 operation stage of about 8-10 years to achieve Q = 10 within 3 10²⁵ neutrons
- Second phase of ITER license
- DT-2 operation stage up to 3 10²⁷ neutrons (Project Specification)

Page 36/47

ITER re-baselining

Page 37/47

Fusion Power Operation (D/DT)

ITER burning plasma scenarios

ITER Q ≥ 5 scenario (1000s burn)

Main option is based on improved H-mode/hybrid scenario with q(0) > 1 and H₉₈ > 1.2 with burn length limited by q(0) reaching 1 (12.5 MA/5.3 T)
 Obtained with P_{aux} = P_{NBI} + P_{ECH} (+ P_{ICH}) ≥ 50 MW with non-inductively driven current ~ 55%

S.H. Kim

Page 40/47

ITER Q ~ 5 scenario (steady-state)

□ Based on improved H-mode/hybrid scenario with stationary q profile (q > 1) and H₉₈ > 1.5 length limited to 3000s by hardware design (10 MA/5.3 T)
 □ Obtained with P_{aux} = P_{NBI} + P_{ECH} ≥ 70 MW with non-inductively driven current ~ 100%

Q = 5 steady steady-state plasma at 10 MA

Conditions identified by 1.5-D ASTRA modelling

- ✓ EPED1+SOLPS used for pedestal and boundary
- Q=5.02, f_{GW}=0.69
- H₉₈=1.52, β_N=3.02
- q_{min}=1.23
- Relatively high l_i(3)~0.87 mainly due to 50 MW NBI (+ 20-30 MW ECH)
- Improved confinement is essential

Energetic ions in ITER scenarios - I

- Energetic ions impact on ITER burning plasmas
 - > Can drive MHD Alfvén eigenmodes → energetic ion loss $P_{\alpha} | \otimes$
 - ≻ Can reduce anomalous transport level → higher τ_{E} → P_{α} \Leftrightarrow
 - ➤ Can increase core plasma β and thus shafranov shift → increased edge stability/pressure → increased τ_E → P_α ☺
 - ≻ Alfvén eigenmodes can reduce plasma turbulence → higher τ_E but energetic ion loss → P_α ? ☺
- **Coupling between all effects difficult to predict in quantitative way for ITER burning plasmas since P**_{α} is dominant

Energetic ions in ITER scenarios - II

- Consequences of EP-driven Alfvén eigenmodes range from
 - \succ Benign saturation \rightarrow significant high-amplitude bursting and transport
- **Extrapolation from present machines difficult due to small** $\rho_{\alpha} / a \cong 10^{-2}$
- Besides loss of heating, ITER first wall loads acceptable for fast ion losses of a few %
- Max power transfer from α's occurs when drift orbit width ~ mode width
 n ~ 30
- Many overlapping AE

ITER will quantify impact of fast ion instabilities in Q = 10 plasmas and explore means for mitigation and control Radial localisation of TAE gaps in ITER Q = 10 plasmas

Page 44/47

ခုကို china eu india japan korea russia usa

Access to high Q conditions

- > Access to high Q requires build-up of P_{α} since P_{aux} is moderate and P_{L-H} is high
- Key to high Q access is density control (gas fuelling for n_{sep} and pellet fuelling for n_{core})
 E. Koechl ITER JINTRAC NF 2020

Conclusions

- ITER will demonstrate the scientific and technological feasibility of fusion power as energy source for humankind
- □ ITER construction is progressing despite challenges → commitment from ITER Organization and its Members
- ITER Research Plan provides experimental strategy to progress from First Plasma through to achievement of Project's goals: Q = 10 (300-500 s), Q = 5 (1000 s) & Q = 5 steady-state
- □ ITER high Q scenarios will address key burning plasma issues for reactors:
- ✓ Coupling of physics processes in self-heated plasmas
- Integration of core-edge physics to achieve burning plasma conditions with acceptable edge plasma conditions
- ✓ Effectiveness of actuators and control schemes for burning plasmas → high Q disruption-free operation
- ✓ In addition many fusion reactor technologies will be demonstrated (Tritium cycle, TBMs, H&CD, PFCs, etc.)

Page 46/47

12th ITER International School – 26 – June - 2023

Page 47/47